3.5.16 \(\int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx\) [416]

3.5.16.1 Optimal result
3.5.16.2 Mathematica [A] (verified)
3.5.16.3 Rubi [A] (verified)
3.5.16.4 Maple [B] (verified)
3.5.16.5 Fricas [A] (verification not implemented)
3.5.16.6 Sympy [F(-1)]
3.5.16.7 Maxima [B] (verification not implemented)
3.5.16.8 Giac [F]
3.5.16.9 Mupad [F(-1)]

3.5.16.1 Optimal result

Integrand size = 25, antiderivative size = 132 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx=\frac {5 a^{5/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {a^2 \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

output
5*a^(5/2)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1 
/2)*sec(d*x+c)^(1/2)/d+a^3*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^ 
(1/2)+a^2*sin(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)
 
3.5.16.2 Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.68 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx=\frac {a^3 \left (5 \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) \sqrt {\sec (c+d x)}+\sqrt {1-\sec (c+d x)} (2+\sec (c+d x))\right ) \sin (c+d x)}{d \sqrt {-1+\cos (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(5/2),x]
 
output
(a^3*(5*ArcSin[Sqrt[1 - Sec[c + d*x]]]*Sqrt[Sec[c + d*x]] + Sqrt[1 - Sec[c 
 + d*x]]*(2 + Sec[c + d*x]))*Sin[c + d*x])/(d*Sqrt[-1 + Cos[c + d*x]]*Sqrt 
[a*(1 + Sec[c + d*x])])
 
3.5.16.3 Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.06, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4752, 3042, 4301, 27, 3042, 4503, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\sec (c+d x) a+a)^{5/2}}{\sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4301

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (a \int \frac {\sqrt {\sec (c+d x) a+a} (5 \sec (c+d x) a+a)}{2 \sqrt {\sec (c+d x)}}dx+\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} a \int \frac {\sqrt {\sec (c+d x) a+a} (5 \sec (c+d x) a+a)}{\sqrt {\sec (c+d x)}}dx+\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} a \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (5 \csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )\)

\(\Big \downarrow \) 4503

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} a \left (5 a \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} a \left (5 a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} a \left (\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {10 a \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a^2 \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}+\frac {1}{2} a \left (\frac {10 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )\right )\)

input
Int[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(5/2),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((a^2*Sqrt[Sec[c + d*x]]*Sqrt[a + a* 
Sec[c + d*x]]*Sin[c + d*x])/d + (a*((10*a^(3/2)*ArcSinh[(Sqrt[a]*Tan[c + d 
*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x] 
)/(d*Sqrt[a + a*Sec[c + d*x]])))/2)
 

3.5.16.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4301
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-b^2)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 
2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Simp[b/(m + n - 1)   Int[(a + 
 b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*(b*(m + 2*n - 1) + a*(3*m + 2*n 
 - 4)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^ 
2, 0] && GtQ[m, 1] && NeQ[m + n - 1, 0] && IntegerQ[2*m]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.5.16.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(321\) vs. \(2(114)=228\).

Time = 2.16 (sec) , antiderivative size = 322, normalized size of antiderivative = 2.44

method result size
default \(\frac {a^{2} \left (5 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+5 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+5 \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+5 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+4 \cos \left (d x +c \right ) \sin \left (d x +c \right )+2 \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{2 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {\cos \left (d x +c \right )}}\) \(322\)

input
int((a+a*sec(d*x+c))^(5/2)*cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2/d*a^2*(5*(-1/(cos(d*x+c)+1))^(1/2)*arctan(1/2*(-cos(d*x+c)+sin(d*x+c)- 
1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2+5*(-1/(cos(d*x+c 
)+1))^(1/2)*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d 
*x+c)+1))^(1/2))*cos(d*x+c)^2+5*arctan(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos 
(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*(-1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c) 
+5*(-1/(cos(d*x+c)+1))^(1/2)*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x 
+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+4*cos(d*x+c)*sin(d*x+c)+2*sin 
(d*x+c))*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/cos(d*x+c)^(1/2)
 
3.5.16.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 373, normalized size of antiderivative = 2.83 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx=\left [\frac {4 \, {\left (2 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 5 \, {\left (a^{2} \cos \left (d x + c\right )^{2} + a^{2} \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{4 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac {2 \, {\left (2 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 5 \, {\left (a^{2} \cos \left (d x + c\right )^{2} + a^{2} \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{2 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

input
integrate((a+a*sec(d*x+c))^(5/2)*cos(d*x+c)^(1/2),x, algorithm="fricas")
 
output
[1/4*(4*(2*a^2*cos(d*x + c) + a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)) 
*sqrt(cos(d*x + c))*sin(d*x + c) + 5*(a^2*cos(d*x + c)^2 + a^2*cos(d*x + c 
))*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos 
(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d* 
x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(d*cos(d*x + c)^2 + d* 
cos(d*x + c)), 1/2*(2*(2*a^2*cos(d*x + c) + a^2)*sqrt((a*cos(d*x + c) + a) 
/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + 5*(a^2*cos(d*x + c)^2 + a 
^2*cos(d*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos( 
d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + 
c) - 2*a)))/(d*cos(d*x + c)^2 + d*cos(d*x + c))]
 
3.5.16.6 Sympy [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx=\text {Timed out} \]

input
integrate((a+a*sec(d*x+c))**(5/2)*cos(d*x+c)**(1/2),x)
 
output
Timed out
 
3.5.16.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 11494 vs. \(2 (114) = 228\).

Time = 0.49 (sec) , antiderivative size = 11494, normalized size of antiderivative = 87.08 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx=\text {Too large to display} \]

input
integrate((a+a*sec(d*x+c))^(5/2)*cos(d*x+c)^(1/2),x, algorithm="maxima")
 
output
1/4*(8*a^2*cos(1/2*d*x + 1/2*c)^4*sin(1/2*d*x + 1/2*c) + 16*a^2*cos(1/2*d* 
x + 1/2*c)^2*sin(1/2*d*x + 1/2*c)^3 + 8*a^2*sin(1/2*d*x + 1/2*c)^5 + 5*(sq 
rt(2)*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt 
(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*a 
^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos 
(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2)*a^2*log( 
2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d* 
x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*a^2*log(2*cos(1 
/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2 
*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(1/2*d*x + 1/2*c)^4 + 10*(sq 
rt(2)*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt 
(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*a 
^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos 
(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2)*a^2*log( 
2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d* 
x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*a^2*log(2*cos(1 
/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2 
*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(1/2*d*x + 1/2*c)^2*sin(1/2* 
d*x + 1/2*c)^2 + 5*(sqrt(2)*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d 
*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x ...
 
3.5.16.8 Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\cos \left (d x + c\right )} \,d x } \]

input
integrate((a+a*sec(d*x+c))^(5/2)*cos(d*x+c)^(1/2),x, algorithm="giac")
 
output
sage0*x
 
3.5.16.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx=\int \sqrt {\cos \left (c+d\,x\right )}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

input
int(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(5/2),x)
 
output
int(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(5/2), x)